APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Electronics & Communication Engineering (Signal Processing)

Scheme of Instruction & Syllabus: 2015 Admissions

Compiled By Rajiv Gandhi Institute of Technology, Kottayam July 2015

APJ Abdul Kalam Technological University Cluster 4: Kottayam

M. Tech Program Electronics and Communication Engineering (Signal Processing)

Credit requirements	: 66 credits (21+19+14+12)				
Normal Duration	: Regular: 4 semesters;	External Registration: 6 semesters;			
Maximum duration	: Regular: 6 semesters;	External Registration: 7 semesters.			
Courses: Core Courses	: Either 4 or 3 credit cou	irses;			
Elective courses: All of 3 credits					

ELIGIBILITY: B. Tech/B.E in Electronics and Communication Engg, Applied Electronics& Instrumentation Engg, Electronics & Instrumentation Engg, Electronics Engg, Biomedical Engg, Computer science & Engg.

Allotment of credits and examination scheme:-

Semester 1 (Credits: 21)

Exam	Course No:	Name	L- T - P	Internal		End Semester	
Slot				Marks	Exa	m	
					Marks	(hrs)	
A		Mathematical foundation for	4-0-0	40	60	3	4
	04 EC 6701	Signal Processing					
В		Advanced Digital	3-0-0	40	60	3	3
		Communication					
	04 EC 6703	Technologies					
C		DSP Algorithms And	3-0-0	40	60	3	3
	04 EC 6705	Architecture					
D		Digital Image & Video	3-0-0	40	60	3	3
	04 EC 6707	Processing					
E	04 EC 6XXX	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 EC 6791	Seminar - I	0-0-2	100	0	0	2
		Advanced signal Processing	0-0-2	100	0	0	1
	04 EC 6793	Lab- I					
		Total	22				21

*See List of Electives-I for slot E

List of Elective - I Courses

Exam Slot	Course No.	Course Name
E	04 EC 6709	Digital filter design & Applications
E	04 EC 6711	Multidimensional Signal Processing
E	04 EC 6713	Wireless Communication system
E	04 EC 6715	Advanced Digital System Design

Semester 2 (Credits: 19)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	(hrs)	
A	04 EC 6702	Adaptive Signal Processing	4-0-0	40	60	3	4
В	04 EC 6704	Wavelet Transforms- Theory and Applications	3-0-0	40	60	3	3
C	04 EC 67XX	Elective- II	3-0-0	40	60	3	3
D	04 EC 67XX	Elective - III	3-0-0	40	60	3	3
E	04 EC 67XX	Elective - IV	3-0-0	40	60	3	3
	04 EC 6792	Mini Project	0-0-4	100	0	0	2
	04 EC 6794	Advanced signal Processing Lab-II	0-0-2	100	0	0	1
		Total	22				19

List of Elective - II Courses

Exam Slot	Course Code	Course Name
С	04 EC 6706	Multirate Signal Processing
С	04 EC 6708	Compressed Sensing
С	04 EC 6712	Array Signal Processing
С	04 EC 6714	VLSI architectures for DSP

List of Elective - III Courses

Exam Slot	Course Code	Course Name
D	04 EC 6716	Signal Compression-Theory and Methods
D	04 EC 6718	Biomedical Signal Processing
D	04 EC 6722	Detection & Estimation
D	04 EC 6724	Design of Embedded systems

List of Elective - IV Courses

Exam Slot	Course Code	Course Name
E	04 EC 6726	Transform Theory
E	04 EC 6728	Optical Signal Processing
E	04 EC 6732	Coding Theory
E	04 EC 6734	FPGA System Design

Summer Break

Exam Slot	Course No:	Name	L- T - P	Internal Marks	Exam		Credit s
					Marks	(hrs)	
NA	04 EC 7790	Industrial Training	0-0-4	NA	NA	NA	Pass /Fail
		Total	4				0

Semester 3 (Credits: 14)

Exam Slot	Course No:	Name	L- T - P	Internal Marks		End Semester Exam	
					Marks	Dura tion (hrs)	
A	04 EC 77XX	Elective - V	3-0-0	40	60	3	3
В	04 EC 77XX	Elective - VI	3-0-0	40	60	3	3
	04EC7791	Seminar - II	0-0-2	100	0	0	2
	04EC7793	Project (Phase - I)	0-0-12	50	0	0	6
		Total	20				14

*See List of Electives-IV for slot A for slot B

^See List of Electives-V

List of Elective - V Courses

Exam Slot	Course Code	Course Name
A	04 EC 7701	Linear & Nonlinear Optimization
A	04 EC 7703	Pattern Recognition & Analysis
A	04 EC 7705	Secure Communication
А	04 EC 7707	Digital Control Systems

List of Elective - VI Courses

Exam Slot	Course Code	Course Name
В	04 EC 7709	Markov Modeling & Queing Theory
В	04 EC 7711	Speech & Audio Signal Processing
В	04 EC 7713	Error Control Coding
В	04 EC 7715	Artificial Neural Network

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	Evalua	External Evaluation Marks	
NA	04 EC 7794	Project (Phase -II)	0-0-21	70	30	NA	12
		Total	21				12

Total: 66

COURSE CODE	COURSE NAME	L-T-P: C	YEAR
04 EC 6701	Mathematical Foundation for Signal Processing	4-0-0:4	2015

Pre-requisites: Matrices and their properties, Probability fundamentals

Course Objectives:

To give the Student:-

- skills in abstract algebra
- the skills to identify linear transformation and transforms and its role in linear system
- familiarity with basic and common probability distributions
- ability to classify random processes, random vectors, and random sequences
- skills to compute statistics of random vectors in terms of mean vector,
- power vector, correlation matrix, and joint probability density
- function using elementary linear algebra and probability theory
- the ability to determine criteria for convergence of random sequences
- skill to assess whether a process or sequence is stationary in any sense

Syllabus

Vector spaces-Matrices in Linear Algebra-Probability- Joint CDF and PDF, Conditional Expectations - convergences in probability and in distribution-Random process, Correlation and Covariance, autocorrelation and auto covariance functions-Random Vector-Time-averages and Ergodicity, Power Spectral density- Markov chain- applications of Poisson and Markov process.

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- understand the formulation of problems in abstract algebra framework
- understand and represent linear transformations
- understand the role of matrices in linear transformation representations
- have a comprehensive knowledge of different function spaces and their roles in engineering
- compute statistics of random processes and random sequences in
- terms of correlation function, power spectrum density, probability density functions, mean, power, and higher order statistics using Fourier analysis and probability theory
- compute correlation function, power spectrum density, probability density functions, mean, power, and higher order statistics of outputs of liner systems whose inputs are random processes or sequences using Fourier analysis and probability theory
- assess whether a process is ergodic in mean, power, correlation, or probability density function express a random process using K-L and other orthogonal function expansions
- apply the concepts of probability, random vectors, random sequences, and random processes to analyze statistical problems in signal processing and image processing

Text Books:

- 1. Paul R. Halmos, Finite-Dimensional Vector Spaces, Literary Licensing, 2013
- 2. Todd K. Moon and Wynn C. Stirling, *Mathematical Methods and Algorithms for Signal Processing*, Prentice Hall,1999

References:

1. Henry Stark and John W. Woods, Probability and Random Processes with Applications to Signal Processing", Pearson Education, Third edition.

2. A. Papoulis and S. UnnikrishnaPillai, Probability, Random Variables and Stochastic Processes, TMH.2002

3. Probabilty and Random Proces, W.Davenport, Wiley, 1970

4. Linear Algebra Done Right , Sheldon Axler, Springer, 1997

5. Arch W. Naylor and George R. Sell, *Linear Operator Theory in Engineering and Science*, Springer, 2000

6. Peter D. Lax, Linear Algebra, Wiley Students Edition, 2007

7.D. C. Lay, Linear Algebra and Its Applications, 3rd Edition, Pearson, 2002

8.G. Strang, Linear Algebra and Its Applications, Nelson Engineering, 2007

9.Kreyszig,.Functional Analysis, Wiley, 1989

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6701	Mathematical Foundation for Signal Processing	4-0-0	0:4
	MODULES	Contact Hours	Sem. Exam Marks (%)
linear spaces, Banachspaces,Cau vectors, Direct	r spaces: Linear independence, basis, dimension,normed inner product spaces,Hilbert space and uchy-Schwartz inequalities ,subspaces , orthogonal sum,lineartransformations,orthogonalprojections,Fourier lear transformation	12	15
square problems, space, row space- change of basis–(1	ces in Linear Algebra: Matrix representation of least minimum error in Hilbert space approximations,column (Matrix), rank nullity theorem, co-ordinate system, finite space)Eigen values and vectors, diagonolisation of composition Karhunen-Loeve expansions,Singular value factorisation	10	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
discrete and conti distributions,Mon CDF and PDF ,Con almost sure and n	bility, conditional Probability, Independent events inuous random variables and probability nent Generating functions, Characteristic functions, Joint ditional Expectations,sequence of random variables: nean-square convergences, convergences in probability n,laws of large numbers, central limit theorem	10	15
and auto covari Random Vector: properties.Statior	lom process, Correlation and Covariance, autocorrelation iance functions, Jointly Gaussian Random Variables. - Definition, Joint statistics, Covariance matrix and its narity and its different forms,LTI systems and random ne-invariant systems with WSS process as an input- time main analyses	9	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
properties.examp	e-averages and Ergodicity,Power Spectral density, les of random processes: white ess,Poisson and Markov processes	9	20
	ov chain(basics only) Examples of applications of Poisson ocess -(description only)Chapman-Kolmogrov theorem	6	20

,Toeplitz and Circul			
Series for WSS Proc			
COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6703	Advanced Digital Communication Technologies	3-0-0:3	2015

Pre-requisites:Nil

Course Objectives:

- To understand the concepts communication of noise channels.
- Effect of synchronization in communication.
- Concepts of band limited channels.

Syllabus

Random Variables and processes, cross correlation and autocorrelation functions. Communication over Additive Gaussian noise channels, Optimum waveform receiver in additive white Gaussian noise (AWGN) channels, Cross correlation receiver, Matched filter receiver and error probabilities, Characterization of fading multipath channels- Statistical models for fading channels- Optimum noncoherent receivers, Communication over band limited channels: Nyquist criterion for zero ISI, equalization techniques.

Course Outcome:

• The student will be able to analyze various aspects of digital communication Techniques

Text Books:

1. J.G Proakis, "Digital Communication", MGH 4th edition, 1995

References:

1. Edward A. Lee and David G. Messerschmitt, "Digital Communication", Allied Publishers (second edition)

2. J Marvin K. Simon, Sami M. Hinedi and William C Lindsey, "Digital communication techniques" PHI

3. William Feller, " An introduction to Probability Theory and its applications", vol 11, Wiley 2000

4. Sheldon M. Ross, "Introduction to probability models", Academic press, 7th edition

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6703	Advanced Digital Communication Technologies	3-	0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
variable: Momer inequality,Chebys Rayleigh and matrix,Stationary	om Variables and processes: Review of random it generating function, Chernoff bound, Markov's hev's inequality, Central limit theorem, Chi square, Rician distributions, correlation, Covariance processes, wide sense stationary processes, cross itocorrelation functions	8	15
Characterization of representation-co	munication over Additive Gaussian noise channels: of communication signals and systems-signal space nnecting linear vector space to physical waveform vector communication over memory less channels.	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
noise (AWGN) ch receiver and error random phase in a optimum receive	r for binary signals- optimum receiver for M-ary s, probability of error for envelope detection of M-	7	15
channels- Karhun non-coherent rece		7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
fading channels- 1	ital communication over fading channels: of fading multipath channels,Statistical models for Time varying channel impulse response,narrow band wideband fading models- channel correlation	7	20

functions- key mu channels	ltipath parameters,Rayleigh and Ricear	n fading		
Communication over Nyquist criterion for	nunication over band limited c r band limited channels,Optimum pulse r zero ISI, partial response signaling,equ forcing linear equalization- decision f	alization	7	20
COURSE CODE	COURSE NAME	L-T-P:C		YEAR
04 EC 6705	DSP ALGORITHMS AND ARCHITECTURE	3-0-0:3		2015

Pre-requisites:

Computer Organization and Architecture, Microprocessors and Microcontrollers

Course Objectives:

- 1.To understand the architecture, and programming of DSP processors
- 2. Able to handle design programs on MATLAB

Syllabus

Need for special DSP processors, Von Neumann versus Harvard Architecture, Basic Pipeline: Implementation Details- Pipeline Hazards, Instruction Level Parallelism ,Computer arithmetic- Signed Digit Numbers- Logarithmic and Residue Number System ,CORDIC Algorithm, architecture Details of BlackFin processor & TMS320C64X, Digital Signal Processing Applications, Design Programs using - Real Time Implementation on DSP processors.

Course Outcome:

The student will be able to program the various applications of DSP processors.

Text Books:

 RulphChassaing, Digital Signal Processing and Applications with the C6713 and C6416, Wiley, 2005
 Nasser Kehtarnawaz, Real Time Signal Processing Based on TMS320C6000, Elsevier, 2004

References:

1. JL Hennesy, D.A. Patterson, Computer Architecture A Quantitative Approach; 3rd Edition, Elsevier India

2. Uwe Mayer-BAeses, Digital Signal Processing with FPGAs, Springer, 2001.

3. Users manual for of various fixed and floating point DSPs, TMS320C6x Data Sheets from TI.

4. Blackfin Processor Hardware Reference, Analog Devices, Version 3.0, 2004.

COURSE CODE:	COURSE TITLE	CRED	ITS
04 EC 6705 DSP ALGORITHMS AND ARCHITECTURE 3-0-0:3):3	
MODULES		Contact Hours	Sem. Exam Marks (%)
Harvard Archited	d for special DSP processors, Von Neumann versus cture Review of Pipelined RISC. Architectures of /LIW fixed and floating point processors. Architecture et Design.	6	15
MODULE 2: Perfo benchmarks. Bas (based on MIPS 40	6	15	
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Instruct Scheduling - Redu Reducing Branch I Limitations of ILP. Performance Issue	8	15	
MODULE 4:Comp Adder Graph , Log Multiplier – Pipeli Arithmetic(DA) - C	8	15	
INTERNAL TEST 2 (MODULE 3 & 4)			
BlackFin process	e studies: Introduction to architecture Details of (a) or (Analog Devices) (b) TMS320C64X Digital Signal ations: FIR and IIR Digital Filter Design, Filter Design	7	20

COURSE PLAN

Programs using MATLAB, Fourier Transform: DFT, FFT programs using MATLAB		
MODULE 6: Real Time Implementation on DSP processors- Factors to be considered for optimized implementation based on processor architecture: Implementation of simple Real Time Digital Filters, FFT using DSP [Only familiarity with instruction set is expected. It is not required to memorize all the instructions.]	7	20
END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6707	Digital Image& Video Processing	3-0-0:3	2015

Pre-requisites:

Digital Signal Processing, Engineering Mathematics

Course Objectives:

Visual information plays an important role in almost all areas of our life. Thiscourse introduces the fundamentals of digital image processing. It emphasizes general principles of image processing, rather than specific applications. It cover topics such as image representation, color representations, sampling and quantization, point operations, linear image filtering and correlation, transforms and subband decompositions, and nonlinear filtering, contrast and color enhancement, image restoration and compression. It also introduces the basicconcepts of video processing.

Syllabus

Digital Image fundamentals-2D linear and circular convolution,.Unitary Transforms for Image processing,, Image Enhancement,Image restoration, Inverse filtering, Wiener filtering, Constrained Least Squares restoration, Interactive restoration, Geometric transformations.Image Segmentation,Color Image Processing: color models-Image Compression, Wavelet based compression techniques. Video Processing, Video Compression, Video coding standards.

Course Outcome:

The student will understand the various aspects of image and video signal processing.

Text Books:

Digital Image Processing- Gonzalez and Woods, Pearson education, 2002. 2.Fundamentals of Digital Image Processing – A K Jain, Pearson education, 2003.

References:

- 1. Digital Image Processing- W K Pratt, John Wiley, 2004
- 2. Digital Signal and Image Processing- Tamal Bose, John Wiley publishers.
- 3. Two dimensional signal and Image Processing- J S Lim, Prentice Hall
- 4. Iain E Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons, September 2003
- 5. A. M. Tekalp, Digital Video Processing , Prentice-Hall
- 6. A Bovik, Handbook of Image & Video Processing, Academic Press, 2000

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6707	Digital Image& Video Processing	3-	0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
	-	7	15
processing - inte subtraction, ima sharpening filters pass filtering, hor frequency domain	e Enhancement: Spatial Domain Methods: point ensity transformations, histogram, processing, image ge averaging. Spatial filtering- smoothing filters, ,Frequency Domain methods- low pass filtering, high momorphic filtering, generation of spatial masks from n specifications,Color Image Processing: color models- IS, Pseudo coloring, intensity slicing, gray level to color	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
circulant and de Inverse filtering, V	e restoration: Degradation model, Diagonalization of oubly block circulantmatrices, Algebraic approaches- Wiener filtering, Constrained Least Squares restoration, pration, Geometric transformations.	6	15
edge and combin local and global p oriented segmen	Segmentation: Detection of discontinuities- point, line, ned detection,edge linking and boundary description, rocessing using Hough Transform- Thresholding,Region tation – basic formulation, region growing by pixel on splitting and merging,.use of motion in segmentation	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
interpixel, psycho theory, error fre predictive, lossy	e Compression: Fundamentals, redundancy: coding, visual, fidelity criteria, Models, Elements of information e compression - variable length, bit plane, lossless compression- lossy predictive, transform coding, JPEG image compression, Wavelet based compression SPIHT, JPEG 2000.	8	20
temporal sampl	Processing: Representation of Digital Video,Spatio- ing; Motion Estimation Video Filtering; Video to coding standards- H.264	6	20

END SEMESTER EXAM				
COURSE CODE	COURSE NAME	L-T-P:C	YEAR	
04 EC 6709	DIGITAL FILTER DESIGN & APPLICATIONS	3-0-0:3	2015	

Pre-requisites:

Engineering Mathematics, Signals & Systems

Course Objectives:

This course includes an in depth treatement of the topic digital filter design. It will strengthen the student's understanding of the foundations of DSP, filter design aspects in view of major application areas. It also covers the implementation issues such as finite word length effects which is a very important aspect of digital processing. It also covers the adaptive filter design concepts and spectral estimation methods which are used extensively in today's engineering applications.

Syllabus

LTI Systems Minimum phase, maximum phase and mixed phase systems. All-pass filters. DFT. Discrete cosine transform. Design of FIR filters, Realization structures-Finite word length effects-Implementation techniques- FIR filter design with MATLAB or Octave. Design of IIR filter, Realization structures--Implementation techniques. Application examples. IIR filter design with MATLAB or Octave. Adaptive Digital Filters, Wiener filter-LMS adaptive algorithm-Recursive least squares algorithm-Power Spectrum Estimation.

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- Design FIR & IIR filters
- Realize filters
- Analyse adaptive digital filters
- Understand the basic concepts of spectrum estimation
- 19 APJ Abdul Kalam Technological University | Cluster 4 | M. Tech Program in Signal Processing

Text Books:

- 1. Emmanuel C Ifeachor, Barrie W.Jervis, *Digital Signal Processing, A practical Approach*, 2/e, Pearson Education.
- 2. Proakis, Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications,
- 4/e, Pearson Education.
- 3. Johnny R. Johnson, Introduction to Digital Signal Processing, PHI, 1992
- 4. Ashok Ambardar, Digital Signal Processing: A Modern Introduction, Thomson, IE, 2007.

References:

 Douglas F. Elliott, Handbook of Digital Signal Processing- Engineering Application , Academic Press.
 Robert J.Schilling, Sandra L.Harris, Fundamentals of Digital Signal Processing using MATLAB, Thomson, 2005
 Ingle, Proakis, Digital Signal Processing Using MATLAB, Thomson, 1/e
 Jones D. Digital Filter Design [Connexions Web site]. June 9, 2005. Available at:

http://cnx.rice.edu/content/col10285/1.1/

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 6709	DIGITAL FILTER DESIGN & APPLICATIONS	3-0	-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
filters. Invertibility mixed phase syste of poles and zer	stems & Transform LTI systems as frequency selective of LTI systems. Minimum phase, maximum phase and ems.All-pass filters. Design of digital filters by placement ros. DFT as a linear transformation. Linear filtering n DFT. Frequency analysis of signals using DFT. Discrete	8	15
calculation metho Comparison of d length effects-Imp	n of FIR filters , Introduction-Specifications-Coefficient ds-Window, Optimal and Frequency sampling methods- ifferent methods , Realization structures-Finite word elementation techniques-Application examples.FIR filter AB or Octave. Implementation of FIR filtering in general anal processors.	9	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
calculation metho transform and Bil	n of IIR filter: Introduction-Specifications. Coefficient ds-Pole zero placement, Impulse invariant, Matched Z inear Z transform(BZT) .Design using BZT and classical lter coefficients by mapping S plane poles and zeros.	8	15
Implementation t	lization structures-Finite word length effects- echniques. Application examples. IIR filter design with OCTAVE, Implementation of IIR, filtering in general mal processors.	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Adapti algorithm-Recursi filters.Application		5	20
	r Spectrum Estimation: Estimation of spectra from nals.Nonparametric and Parametric methods for Power ion	5	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6711	Multidimensional Signal Processing	3-0-0:3	2015

Pre-requisites: Signal Processing

Course Objectives:

To give the Student:-

• The ability to understand the basic concept of Multidimensional Signal Processing

Syllabus

- Multidimensional Discrete signals and Multidimensional systems
- Multidimensional DFT
- Design and implementation of two dimensional FIR filters
- Design and implementation of two dimensional IIR filters
- Multidimensional Recursive systems
- Reconstruction of signals

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- Understand the basic concept of Multidimensional signals.
- Design and implement Two dimensional FIR and IIR filters.

Text Books:

1. Multidimensional Digital Signal Processing - Dan E Dudgeon and R M Mersereau, Prentice Hall

References:

- 1. Digital Signal and Image Processing- Tamal Bose, John Wiley publishers.
- 2. Two dimensional signal and Image Processing- J S Lim, Prentice Hall.

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6711	Multidimensional Signal Processing	3-	0-0:3
	MODULES		Sem. Exam Marks (%)
systems: Frequen and systems, san signals with c	tidimensional Discrete signals and Multidimensional cy domain characterization of multidimensional signals npling two dimensional signals, processing continuous discrete systems. Discrete Fourier analysis of signals: Discrete Fourier series representation of odic sequences.	6	15
MODULE 2: Multidimensional DFT, definition an properties, Calculation of DFT, Vector radix FFT Discrete Fourier transforms for general periodically sampled signals, relationship between M dimensional and one dimensional DFTs.		5	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Implementation, squares design, D	gn and implementation of two dimensional FIR filters: Design using windows, Optimal FIR filter design-least esign of cascaded and parallel 2 D FIR filters, Design and of FIR filters using transformations	6	15
classical 2 D IIR f IIR filters , signal state variable re method, Descen	gn and implementation of two dimensional IIR filters: ilter implementations, Iterative implementation of 2 D I flow graphs- circuit elements and their realizations, alizations Space domain Design techniques- Shank's it methods, Iterative prefiltering design method, in design techniques, stabilization techniques.	9	15
	INTERNAL TEST 2 (MODULE 3 & 4)		

MODULE 5: Multidimensional Recursive systems: Finite order difference equations- realizing LSI systems using difference equations, recursive computability, boundary conditions, ordering the computation of output samples.Multidimensional Z Transforms, stability of 2 D recursive systems, stability theorems, Two dimensional complex cepstrum.	7	20
MODULE 6: 2 dimensional Inverse problems: Constrained iterative signal restoration; iterative techniques for constrained deconvolution and signal extrapolation, reconstructions from phase or magnitude. Reconstruction of signals from their projections: Projection slice theorem, Discretization of the Reconstruction problem, Fourier domain reconstruction algorithms, Convolution/ back-projection algorithms, iterative reconstruction algorithms, Fan beam algorithms, Projection of discrete signals.	9	20
END SEMESTER EXAM	,	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6713	WIRELESS COMMUNICATION SYSTEM	3-0-0:3	2015

Pre-requisites:

Course Objectives:

To familiarise with different channel models

- To impart knowledge in the concept of fading and diversity.
- ITo familiarise with different techniques in cellular communication
- To introduce the concept of spread spectrum and CDMA
- To impart knowledge in fading channel capacity in different systems

Syllabus

Fading and Diversity -Cellular Communication - Multiple Access: FDM/TDM/FDMA/TDMA-Spread spectrum and CDMA-Fading Channel Capacity-Multiple Input Multiple output (MIMO) systems- Cellular Wireless Communication Standards : GSM ,IS 95 CDMA- 3G systems:UMTS& CDMA 2000 standards and specifications.

Course Outcome:

After Learning this course, the student will be able to:-

- Describe and Enumerate the various methods of Radio Propagation
- Explain and illustrate the various concepts used in diversity techniques
- Describe the concept of cellularCommunication

Explain the various concepts associated with CDMA systems

Text Books:

1. Andrea Goldsmith, Wireless Communications, Cambridge University press.

2. Simon Haykin and Michael Moher, Modern Wireless Communications, Pearson Education.

3. T.S. Rappaport, Wireless Communication, principles & practice, PHI, 2001.

References:

1. G.L Stuber, Principles of Mobile Communications, 2nd edition, Kluwer Academic Publishers.

2. KamiloFeher, Wireless digital communication, PHI, 1995.

3. R.L Peterson, R.E. Ziemer and David E. Borth, Introduction to Spread Spectrum

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 6713	WIRELESS COMMUNICATION SYSTEM	3-0)-0:3
	MODULES		Sem. Exam Marks (%)
models statistical fading	g:Wireless Channel Models- path loss and shadowing models- Narrow band and wideband Fading models- rmance of digital modulation schemes over wireless	5	15
Space Diversity- R paths-Combining combining- maxir	sity- Repetition coding and Time Diversity- Frequency and eceive Diversity- Concept of diversity branches and signal methods- Selective diversity combining -Switched nal ratio combining-Equal gain combining performance gh fading channels.	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Networks, Multiple channel interferer	r Communication : Cellular eAccess:FDM/TDM/FDMA/TDMA- Spatial reuse- Co- nce Analysis- Hand over Analysis- Erlang Capacity efficiency and Grade of Service- Improving capacity - Cell prization	7	15
MODULE 4:Diversity in DS-SS systems- Rake Receiver- Performance analysis.Spread Spectrum Multiple Access-CDMA Systems- Interference Analysis for Broadcast and Multiple Access Channels-Capacity of cellular CDMA networks- Reverse link power control- Hard and Soft hand off strategies.		7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Capacity of flat a Multiple output (g Channel Capacity: Capacity of Wireless Channels- ind frequency selective fading channels- Multiple Input MIMO) systems- Narrow band multiple antenna system Decomposition of MIMO Channels- Capacity of MIMO	7	20
cellular systems: 0	ar Wireless Communication Standards Second generation GSM specifications and Air Interface - specifications, IS 95 S:UMTS& CDMA 2000 standards and specifications	6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6715	Advanced Digital System Design	3-0-0:3	2015

Pre-requisites: Digital System Design

Course Objectives:

To give the Student:-

• The ability to understand the basic concepts of digital system

Syllabus

- MSI and LSI circuits and their applications
- Synchronous sequential circuits
- Asynchronous sequential circuits
- Designing with Programmable Logic Devices
- Complex Programmable Logic Devices and Field Programmable Gate Arrays
- Timing issues in Digital system design

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- Understand the basic concepts of digital system
- Design systems as per the requirement

Text Books:

- Charles H. Roth ,*Fundamentals of Logic Design*, Thomson Publishers, 5th ed.
- Milos D Ercegovac, Tomas Lang, *Digital systems and hardware / firmware algorithm*, John Wiley, 1985

References:

- William I. Fletcher, A Systematic Approach to Digital Design, PHI, 1996.
- N.N Biswas, Logic Design Theory, Prentice Hall of India, 1st Edn, 1993.
- ZviKohavi, Switching and Finite automata Theory, Tata McGraw Hill, 2nd ed
- Jan M. Rabaey, A. Chandrakasan, B. Nikolic, *Digital Integrated Circuits- A Design perspective*, Pearson education/ Prentice-Hall India Ltd, 2nd ed
- Comer, Digital Logic State Machine Design, Oxford University Press, 3rd ed.

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 6715	Advanced Digital System Design	3-0)-0:3
	MODULES		Sem. Exam Marks (%)
MODULE 1: MSI and LSI circuits and their applications: Arithmetic circuits, comparators, Multiplexers, Code Converters, XOR & AOI Gates Multi module implementation of sequential systems – Multi module registers - and counters. Design of sequential systems with small number of standard modules, State register Counters and RAM with combinational networks Multi module implementation of sequential systems – Multi module registers and counters.		7	15
Machine Analysis, procedure – deriv	ronous sequential circuits: Clocked Synchronous State Mealy and Moore machines Finite State Machine design e state diagrams and state tables, state reduction se assignments. Implementing the states of FSM.	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
excitation table, F Desgn of asynch Static and dynan	chronous sequential circuits: Analysis, Derivation of Flow table reduction, state assignment, transition table, ronous Sequential circuits, Race conditions and cycles, nic hazards, Methods for avoiding races and hazards, Basics of SM charts.	8	15
Memories, Progra PLAs, PLA minimiz	ning with Programmable Logic Devices: Read – Only ammable Array Logic PALs, Programmable Logic Arrays zation and PLA folding, Other Sequential PLDs, Design of d sequential circuits using PLD's.	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Complex Programmable Logic Devices and Field Programmable Gate Arrays , Altera Series FPGAs ,Xilinx Series FPGAs		6	20
synchronous timir timed circuit desig	g issues in Digital system design: timing classification- ng basics – skew and jitter , latch based clocking- self gn - self timed logic, completion signal generation,self nchronizers and arbiters.	6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 GN 6001	RESEARCH METHODOLOGY	0 -2-0:2	2015

Pre-requisites: Nil

Course Objectives:

- To get introduced to research philosophy and processes in general.
- To formulate the research problem and prepare research plan
- To apply various numerical /quantitative techniques for data analysis
- To communicate the research findings effectively

Syllabus

Introduction to the Concepts of Research Methodology, Research Proposals, Research Design, Data Collection and Analysis, Quantitative Techniques and Mathematical Modeling, Report Writing

Course Outcome:

Students who successfully complete this course would learn the fundamental concepts of Research Methodology, apply the basic aspects of the Research methodology to formulate a research problem and its plan. They would also be able to deploy numerical/.quantiative techniques for data analysis. They would be equipped with good technical writing and presentation skills.

Text Books:

1. Research Methodology: Methods and Techniques', by Dr. C. R. Kothari, New Age International Publisher, 2004

2 Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE Publications Ltd; Third Edition

Reference Books:

- 1. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard, Juta and Company Ltd, 2004
- 2. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004
- 3. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 4. Management Research Methodology' by K. N. Krishnaswamy et al, Person Education

COURSE CODE:	COURSE TITLE	CR	EDITS	
04 GN 6001	RESEARCH METHODOLOGY	0-	2-0:2	
	MODULES		Sem. Exam Marks (%)	
MODULE 1: Introduction to Research Methodology, Concepts of Research, Meaning and Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical		5	15	
problem, Technic	ia of Good Research, Research Problem, Selection of a ques involved in definition of a problem, Research s, contents, Ethical aspects, IPR issues like patenting,	4	15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
Survey and Rev Research Design	ning, Need and Types of research design, Literature iew, Identifying gap areas from literature review, Process, Sampling fundamentals, Measurement and s, Data Collection – concept, types and methods, Design	5	15	
MODULE 4: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression, Fundamentals of time series analysis and spectral analysis		5	15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement		5	20	
MODULE 6: Documentation and presentation tools – LATEX, Office Software with basic presentations skills, Use of Internet and advanced search techniques,			20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EC 6791	SEMINAR-I	0-0-2 :2	2015

Each student shall present a seminar on any topic of interest related to the core / elective courses offered in the first semester of the M. Tech. Programme. He / she shall select the topic based on the References: from international journals of repute, preferably IEEE journals. They should get the paper approved by the Programme Co-ordinator / Faculty member in charge of the seminar and shall present it in the class. Every student shall participate in the seminar. The students should undertake a detailed study on the topic and submit a report at the end of the semester. Marks will be awarded based on the topic, presentation, participation in the seminar and the report submitted.

COURSE CODE	COURSE NAME	L-T-P	YEAR
04 EC 6793	ADVANCED SIGNAL PROCESSING LAB-I	0-0-2:1	2015

Objective: To experiment the concepts introduced in the core and elective courses offered in the first semester with the help of MATLAB and DSP kit.

EXPECTED OUTCOME:

The student will be able to analyze and implement the concepts in the core / elective courses offered in the first semester.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6702	Adaptive Signal Processing	4-0-0:4	2015

Pre-requisites: Signal Processing

Course Objectives:

To give the Student:-

• The ability to understand the basic concept of Adaptive Signal Processing.

Syllabus

Adaptive systems

- Theory of adaptation with stationary signals
- Gradient estimation and its effects on adaptation]
- Important adaptive algorithms and Applications of Adaptive signal processing
- Other adaptive algorithms
- Adaptive modeling

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

• Understand the basic concept of Adaptive Signal Processing.

Text Books:

- Adaptive signal processing: Widrow and Stearns, Pearson
- Statistical and Adaptive signal processing- Manalokis, Ingle and Kogon, Artech House INC., 2005.

References:

- Adaptive filter theory- 4th edition, Simon Haykin, Prentice Hall
- Adaptive filters- A H Sayed, John Wiley
- Adaptive filtering primer with MATLAB A Poularikas, Z M Ramadan, Taylor and Francis Publications
- Digital Signal and Image processing- Tamal Bose, John Wiley publications.

COURSE CODE:	COURSE TITLE	CRI	DITS
04 EC 6702	Adaptive Signal Processing	4-0	0-0:4
	MODULES	Contact Hours	Sem. Exam Marks (%)
Closed loop ada function, Gradier	tive systems: definitions and characteristics, Open and aptation, Adaptive linear combiner, Performance and minimum mean square error, performance nt and minimum mean square error, Alternate dient	9	15
correlation matrix matrix ,Searching search, Stability a	ory of adaptation with stationary signals: Input a, Eigen values and eigen vectors of the i/p correlation the performance surface: Basic ideas of gradient and rate of convergence, Learning curve, Newton's descent method, Comparison	10	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
component estir penalty, Variance	ent estimation and its effects on adaptation: Gradient nation by derivative measurement, performance s of the gradient estimate, Effects on the weight – Excess mean square error and time constants, total misadjustments and other practical	9	15
signal processing weight vector, lea mis adjustment,	tant adaptive algorithms and Applications of Adaptive : LMS Algorithm, Derivation, Convergence of the arning curve, noise vector in weight vector solution, performance, Z Transforms in Adaptive signal adaptive algorithms- LMS Newton.	10	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
regression, Recurs	ner adaptive algorithms-LMS Newton, Sequential sive least squares, Adaptive recursive filters, Random , Adaptive lattices predictor, Adaptive filters with S.	9	20
channel, adaptive	aptive modelling of a multi-path communication model in geophysical exploration, Inverse modelling, ence cancelling: applications in Bio-signal processing	9	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P: C	YEAR
04 EC 6704	Wavelet Transforms: Theory and Applications	3-0-0:3	2015

Pre-requisites: Linear Algebra, Filter Bank preliminaries

Course Objectives:

To give the Student:-

- -concepts of the basic signal representation and Fourier transforms
- -concepts of Multi Resolution Analysis and Wavelets
- -an Understanding of the wavelet transform in both continuous and discrete domain
- -an ability to design of wavelets using Lifting scheme
- -an ability to the apply Wavelet transform in signal processing
- -explain the concepts, theory, and algorithms behind wavelets from an interdisciplinary perspective that unifies harmonic analysis (mathematics), filter banks (signal processing), and multiresolution analysis (computer vision).

Syllabus

Continuous Wavelet Transform-Discrete wavelet Transform-Alternative wavelet representations- Bi-orthogonal Wavelets-Lifting scheme-Image Compression

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- -use Fourier tools to analyse signals and understand their strengths and shortcomings
- -gain knowledge about MRA, its evolution from a vector space and representation of functions using wavelet bases
- -acquire knowledge about various wavelet transforms and design wavelet
- transform
- -apply wavelet transform for various signal & image processing applications
- -master the modern signal processing tools using signal spaces, bases, operators and series expansions.
- apply wavelets, filter banks, and multiresolution techniques to a problem at hand, and justify why wavelets provide the right tool

Text Books:

1.Insight into wavelets: From theory to Practice- K P Soman and K I Ramachandran, Prentice Hall of India

- 2.Wavelet Transforms: Introduction to theory and applications- R M Rao and A S Bopardikar, Pears
- 3. Ripples in Mathematics: Discrete Wavelet Transform, A.Jensen, Anders la Cour-Harbo

References:

- 1. Wavelets and filter banks- G Strang and T Q Nguyen, Wellesley Cambridge Press, 1998.
- Fundamentals of Wavelets: Theory, Algorithms and Applications- J C Goswamy and A K Chan, Wiley-Interscience publications, John Wiley and sons, 1999
- 3. Wavelets and Multiwavelets- F Keinert, SIAM, Chapman and Hall/CRC, 2004
- 4. Ten Lectures on Wavelets- Ingrid Daubechies, SIAM, 1990
- Wavelet Analysis- The scalable structure of Information- H L Resnikoff, R. O. Wells, Jr., Springer, 2004.
- 6. A wavelet tour of signal processing-the sparse way, StephaneMallat,Elsevier,Third edition,2009
- 7. Wavelets&SubbandCoding,Vetterli&Kovacevic, Prentice Hall, 1995
- Gerald Kaiser, A friendly guide to wavelets, Birkhauser/Springer International Edition, 1994, Indian reprint 2005.

COURSE CODE:	COURSE TITLE	CREDITS		
04 EC 6704	Wavelet Transforms: Theory and Applications	3-0	3-0-0:3	
MODULES		Contact Hours	Sem. Exam Marks (%)	
representation Uncertainty Princ admissibility con correlation, CWT	nuous Wavelet Transform: Continuous time frequency of signals,The Windowed Fourier Transform iple and time frequency tiling Wavelets, specifications ditions, Continuous wavelet transform CWT as a as an operator, Inverse CWT. Comparison of wavelets e frequency transforms.	7	15	
and discrete tim nested linear vec MRA, Constructio	ete wavelet Transform: Discrete wavelet transform: e wavelet transforms.Approximations of vectors in tor spaces,Example of an MRA, Formal definition o on of general orthonormal MRA, a Wavelet basis fo ng interpretations- Decomposition and Reconstructior	9	15	

COURSE PLAN

filters, examples of orthogonal basis generating wavelets, interpreting				
orthonormal MRA for Discrete time signals, Mallat algorithm , Filter				
bank implementation of DWT				
INTERNAL TEST 1 (MODULE 1 & 2)	I			
MODULE 3:Alternative wavelet representations- Biorthogonal				
Wavelets: biorthogonality in vector space, biorthogonal wavelet				
bases, signal representation using biorthogonal wavelet system,	7	15		
advantages of biorthogonalwavelets, biorthogonal analysis and				
synthesis, Filter bank implementation				
MODULE 4:Two dimensional Wavelets, filter bank implementation of				
two dimensional wavelet transform.Haar wavelet and		15		
properties,Shannon wavelet and properties,Daubechies family of	6			
wavelet properties Comparison of different wavelets				
INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5:Lifting scheme: Wavelet Transform using polyphase matrix				
factorization, Geometrical foundations of the lifting scheme, lifting	8	20		
scheme in the z- domain mathematical preliminaries for polyphase	0			
factorization ,Dealing with Signal Boundary				
MODULE 6:Image Compression: short descriptions on EZW Coding,				
SPIHT and Wavelet Difference Reduction Compression		20		
Algorithm, Denoising, speckle removal, edge detection and object	7			
isolation, communication applications – scaling functions as		20		
signalingpulses, two specific applications of wavelet transforms in				
signal processing.				
END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6706	Multirate Signal Processing	3-0-0:3	2015

Pre-requisites: Digital signal processing

Course Objectives:

• The course focuses on multirate signal processing which is the basic to modern signal processing. Topics include multirate signal processing material such as decimation, interpolation, filter banks, polyphase filtering, advanced filtering structures and nonuniformsampling.

Syllabus

Single-Rate Discrete-Time Signals and Systems-Basic Sampling alteration schemes: Time-Domain Representation of Down-Sampling and Up-Sampling-Frequency-Domain Characterization -Polyphase Decomposition- Multistage Systems-Filters in Multirate Systems FIR & IIR Filters for Sampling Rate Conversion -Sampling Rate Conversion by a Fractional Factor-Sampling Rate Alteration by an Arbitrary Factor- Fractional-Delay Filters-Lth-Band FIR Digital Filters-Complementary FIR Filter Pairs-Multirate FIR Filter Banks- Octave Filter banks.

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to analysemultirate system with multiple sampling rates.

Text Books:

1. Multirate filtering for Digital Signal processing- MATLAB applications, LjiljanaMilic, Information Science Reference, Hershey- New York, 2009

References:

1. Multirate systems and filter banks. P.P. Vaidyanathan Prentice Hall.PTR. 1993.

2. Multirate digital signal processing .N.J. Fliege.John Wiley 1994.

3. Multirate Digital Signal Processing, R.E. Crochiere. L. R Prentice Hall. Inc. 19834. Sanjit K. Mitra, "

Digital Signal Processing: A computer based approach." McGrawHill. 1998.

COURSE CODE:	COURSE TITLE	CREE	DITS
04 EC 6706	Multirate Signal Processing	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Systems.Basic Representation of Characterization of Interpolation,Iden	wiew of Single-Rate Discrete-Time Signals and Sampling alteration schemes: Time-Domain Down-Sampling and Up-Sampling, Frequency-Domain of Down-Sampling and Up-Sampling, Decimation and tities, Cascading, Sampling-Rate Alteration e Decomposition, Multistage Systems.	8	15
Conversion :Direc Interpolators ,P Interpolators,Men	in Multirate Systems, FIR Filters for Sampling Rate t Implementation Structures for FIR Decimators and oly-phase Implementation of Decimators and nory Saving Structures for FIR, Poly-phase Decimators s, Computational Efficiency of FIR Decimators and	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		1
Interpolation,Com	Filters for Sampling Rate Conversion: Direct Structures for IIR Filters for Decimation and nputational Requirements for IIR Decimators and ilter Structures Based on Polyphase Decomposition	6	15
Rate Conversion Signal, Polyphase Converters, Ration	ling Rate Conversion by a Fractional Factor: Sampling by a Rational Factor, Spectrum of the Resampled Implementation of Fractional Sampling Rate al Sampling Rate Alteration with Large Conversion Rate Alteration by an Arbitrary Factor, Fractional-	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		1
Definitions and Pr Band,Filters,Separ	nd FIR Digital Filters,Lth-Band Linear-Phase FIR Filters: operties,Polyphase Implementation of FIR Lth- able Linear-Phase Lth-Band FIR Filters, Minimum- um-Phase Transfer Functions,Halfband FIR Filters	5	20
Complementary D Analysis and Synth Pairs, Multirate FIF filter banks, Perfec Orthogonal Two c	ementary FIR Filter Pairs, Definitions of bigital Filter Pairs, Constructing High pass FIR Filters, nesis Filter Pairs, FIR Complementary Filter R Filter Banks: Two Channel FIR Filter bank, Alias free ct reconstruction and Near Perfect reconstruction, hannel FIR filter bank, Tree structured Multi-channel banks with equal pass bands, Octave Filter banks.	9	20
	END SEMESTER EXAM		•

OURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6708	Compressed Sensing	3-0-0:3	2015

Course Objectives:

• To give the Student, the basic concept of compressed sensing

Syllabus

- An invitation to compressive sensing
- Sparse solutions of underdetermined systems
- Basic Algorithms
- Coherence
- Restricted Isometry property
- Sparse Recovery With Random Matrices
- Gelfand widths of 1 Balls

Course Outcome:

• An overview of compressed sensing

Text Books:

• Simon Foucart & HolgerRauhut, A mathematical introduction to compressive sensing Springer

References:

1. Yonina C, EldarGittakutyniok,Compressedsensing,Theory&Applications,Cambridge University Press

COURSE CODE:	COURSE TITLE	CREDITS	
04 EC 6708	COMPRESSED SENSING	3-0	-0:3
	MODULES		Sem. Exam Marks (%)
sensing, Applicati underdetermined	MODULE 1: An invitation to compressive sensing :what is compressive sensing, Applications ,Motivations &Extensions,Sparse solutions of underdetermined systems : Sparsity& compressibility-Minimal number of measurements –NP –hardness of lo minimisation		15
methods-Thresh Property, Stabilit	sic Algorithms: Optimisation methods –Greedy holding –Based Methods, Basis pursuit: Null Space y, Robustness, Recovery of individual vectors, The olytope-Low –Rank Matrix recovery	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
small coherence-	ence: Definition & Basic properties,- matrices with Analysis of orthogonal Matching pursuit, Analysis of lysis of thresh holding algorithms	6	15
properties, analysi	MODULE 4:Restricted Isometryproperty :Definition & Basic properties, analysis of basis pursuit, Analysis of thresh holding algorithms, Analysis of Greedy algorithms		
	INTERNAL TEST 2 (MODULE 3 & 4)		l
RestritedIsometry Recovery, Restri	Sparse Recovery With Random Matrices: property for subgaussian matrices-Nonuniform cted Isometry property for Gaussian Matrices- on-LindenstraussEmbeddings	7	20
MODULE 6:Gelfa compressive Sen ,Application to th and Quotient pr Bounded Orthonc	8	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6712	ARRAY SIGNAL PROCESSING	3-0-0:3	2015

Course Objectives:

To give the Student:-

• The ability to understand the basic concept of Array Signal Processing.

Syllabus

- Spatial Signals
- Spatial Frequency
- Sensor Arrays
- Direction of Arrival Estimation
- Direction of Arrival Estimation Subspace methods
- Higher order statistics in Signal Processing

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

• Understand the basic concept of Array Signal Processing.

Text Books:

- Array Signal Processing: Concepts and Techniques., Dan E. Dugeon and Don H. Johnson. (1993).
 a. Prentice Hall.
- 2. Statistical and Adaptive signal processing- Manalokis, Ingle and Kogon, Artech House INC., 2005.

References:

- 1. Spectral Analysis of Signals. PetreStoica and Randolph L. Moses. (2005, 1997) Prentice Hall.
- 2. Array Signal Processing [Connexions Web site]. February 8, 2005. Available at:
 - a. http://cnx.rice.edu/content/col10255/1.3/

COURSE CODE:	COURSE TITLE	CREDITS			
04 EC 6712	Array Signal Processing	3-0-0:3			
	MODULES				
	al Signals: Signals in space and time. Spatial frequency, Jency. Wave fields. Farfield and Near field signals.	6	15		
Spatial Frequency	MODULE 2: Spatial Frequency: Aliasing in spatial frequency domain. Spatial Frequency Transform, Spatial spectrum. Spatial Domain Filtering. Beam Forming. Spatially white signal				
	INTERNAL TEST 1 (MODULE 1 & 2)				
arrays. Uniform li	or Arrays: Spatial sampling, Nyquist criterion. Sensor near arrays, planar and random arrays. Array transfer Array steering vector for ULA. Broadband arrays	8	15		
	MODULE 4: Direction of Arrival Estimation : Non parametric methods - Beam forming and Capon methods. Resolution of Beam forming method.		15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Direction of Arrival Estimation Subspace methods - MUSIC, Minimum Norm and ESPRIT techniques. Spatial Smoothing.		7	20		
MODULE 6: Higher order statistics in Signal Processing: Moments, Cumulants and poly spectra, Higher order moments and LTI systems.		7	20		
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6714	VLSI architectures for DSP	3-0-0:3	2015

Course Objectives:

To give the Student:-

• The ability to understand the basic concepts of VLSI DSP Architectures.

Syllabus

Pipelining and parallel processing- folding- Fast convolution – Scaling and round off noise – Digital lattice filter structures-Bit level arithmetic architectures-Synchronous, wave and asynchronous pipelines-

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

• Understand the basic concepts of VLSI DSP Architectures.

Text Books:

- 1. Charles H. Roth ,*Fundamentals of Logic Design*, Thomson Publishers, 5th ed.
- 2. Milos D Ercegovac, Tomas Lang, *Digital systems and hardware / firmware algorithm*, John Wiley, 1985

References:

- 1. William I. Fletcher, A Systematic Approach to Digital Design, PHI, 1996.
- 2. N.N Biswas, *Logic Design Theory*, Prentice Hall of India, 1st Edn, 1993.
- 3. ZviKohavi, Switching and Finite automata Theory, Tata McGraw Hill, 2nd ed.
- 4. Jan M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits- A Design
 - a. perspective, Pearson education/ Prentice-Hall India Ltd, 2nd ed
- 5. Comer, Digital Logic State Machine Design, Oxford University Press, 3rd ed.

COURSE CODE:	COURSE TITLE	CRI	DITS
04 EC 6714	VLSI Architectures for DSP	3-()-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Parallel processing	ning and parallel processing- pipelining of FIR filters, g, pipelining and parallel processing for low power, ons and properties, solving system of inequalities, es.	7	15
Iterated convolut	onvolution – Cook Toom Algorithm, Winograd Algorithm, ion, Cyclic convolution Algorithmic strength reduction in rms- Parallel FIR filters, DCT and IDCT	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)	1	
variable descript computation, rou computation usin pipelining.	g and round off noise – scaling and round off noise, state tion of digital filters, Scaling and round off noise and off noise in pipelined IIR filters, Round off noise og state variable description, slow down, retiming and	7	15
lattice filters, Deri	MODULE 4:Digital lattice filter structures- Schur algorithm, Digital basic lattice filters, Derivation of one multiplier Lattice filter , Derivation of scaled-normalized lattice filter, Round off noise calculation in Lattice filters		
	INTERNAL TEST 2 (MODULE 3 & 4)	1	
MODULE 5: Bit level arithmetic architectures- parallel multipliers, interleaved floor plan and bit plane based digital filters, Bit serial filter design and implementation, Canonic signed digital arithmetic		7	20
MODULE 6:Synchronous, wave and asynchronous pipelines- Synchronous pipelining and clocking styles, clock skew and clock distribution in bit level pipelined VLSI designs, Wave pipelining, asynchronous pipelining		7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6716	Signal Compression Theory and Methods	3-0-0:3	2015

Course Objectives:

- To familiarise with different coding techniques.
- To introduce the concept of rate distortion theory.
- To introduce different types of transforms
- To familiarise with different data compression standards

Syllabus

Information Theory- Compression Techniques - Huffman Coding - Arithmetic Coding - Dictionary Techniques - Predictive Coding - Rate distortion theory-Quantization - Transforms- Analysis/Synthesis Schemes-Data, Audio , Image and Video Compression Standards.

Course Outcome:

The student would have demonstrated the ability to understand different types of coding techniques, rate distortion theory and various transform coding techniques,

Text Books:

1. "Introduction to Data Compression", Khalid Sayood, Morgan Kaufmann Publishers., Second Edn.,

2005.

2. "Data Compression: The Complete Reference", David Salomon, Springer Publications, 4th Edn.,

2006.

References:

1. "Rate Distortion Theory: A Mathematical Basis for Data Compression", Toby Berger, Prentice Hall, Inc., 1971.

2. "The Transform and Data Compression Handbook", K.R.Rao, P.C.Yip, CRC Press., 2001.

3. "Information Theory and Reliable Communication", R.G.Gallager, John Wiley & Sons, Inc., 1968.

4. "Multiresolution Signal Decomposition: Transforms, Subbands and Wavelets", Ali N. Akansu, Richard A. Haddad, Academic Press. 1992

5. "Wavelets and Subband Coding", Martin Vetterli, JelenaKovacevic, Prentice Hall Inc., 1995

6. "Elements of Information Theory," Thomas M. Cover, Joy A. Thomas, John Wiley & Sons, Inc.,

1991.

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 6716	Signal Compression Theory and Methods	3-0-	-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
information sour theorem.Compres Mathematical Pre	ew of Information Theory: The discrete memoryless ree - Kraft inequality; optimal codes, Source coding ssion Techniques - Lossless and Lossy Compression - eliminaries for Lossless Compression,Huffman Coding - uffman codes - Extended,Huffman Coding – Adaptive	7	15
Coding,Dictionary	netic Coding - Adaptive Arithmetic coding , Run Length Techniques - Lempel-Ziv coding, Applications -Predictive tion with Partial Match,Burrows Wheeler Transform, Compression	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
of R(D); Calculatio Rate distortion the theorem,Quantiza quantization, vect	istortion theory: Rate distortion function R(D),Properties n of R(D) for the binary source and the Gaussian source, eorem, Converse of the Rate distortion ation - Uniform & Non-uniform - optimal and adaptive or quantization and structures for VQ, Optimality Predictive Coding - Differential Encoding Schemes.	8	15
Transform, Discre Transform, Lappe	ematical Preliminaries for Transforms, KarhunenLoeve te Cosine and Sine Transforms, Discrete Walsh Hadamard d transforms , Transform coding - Subbandcoding, Wavelet on - Analysis/Synthesis Schemes	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Dolby AC-3,Image	Compression standards: MPEG, Philips PASC, Sony ATRAC, e Compression standards: JBIG, GIF, JPEG & JPEG derived s, CALIC, SPIHT,EZW, JPEG 2000	6	20
	Compression standards: Zip and Gzip.Video Compression H.261, H.263 & H264.	6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6718	Biomedical Signal Processing	3-0-0:3	2015

Course Objectives:

To give the Student:-

- To impart knowledge about the principle of different types of bio-medical signals
- To give ideas about the interpretation of various signals in biomedical applications

Syllabus

Introduction to Biomedical Signals, Review of linear systems- Detection of biomedical signals in noise-Classification of biomedical signals, Cardio vascular applications- ECG Signal Processing, Data Compression- Neurological Applications- Modeling EEG

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- Understand the basic concept of Biomedical signals
- Understand the basic concept of Applications of Biomedical signals

Text Books:

- 1. Biomedical Signal Processing: Principles and techniques, D.C.Reddy, Tata McGraw Hill,
- 2. Biosignal and Biomedical Image Processing, Marcel Dekker, Semmlow, 2004

References:

- 1. Biomedical Signal Processing & Signal Modeling, Bruce, Wiley, 2001
- 2. Bioelectrical Signal Processing in Cardiac & Neurological Applications, Sörnmo, Elsevier
- 3. Biomedical Signal Analysis, Rangayyan, Wiley 2002.
- 4. Introduction to Biomedical Engineering, 2/e, Enderle, Elsevier, 2005

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 6718	Biomedical Signal Processing	3-0	-0:3
	MODULES		
of Biomedical sigr Processing - Comp linear systems - Fo of biomedical sigr	uction to Biomedical Signals - Examples and acquisition hals - ECG, EEG, EMG etc. Tasks in Biomedical Signal outer Aided Diagnosis. Origin of bio potentials , Review of ourier Transform and Time Frequency Analysis (Wavelet) hals- Processing of Random & Stochastic signals - spectral ties and effects of noise in biomedical instruments - dical instruments.	9	15
case studies - Ada signals Detection one signal embed interference. Ever	rrent, coupled and correlated processes - illustration with ptive and optimal filtering .Modelling of Biomedical of biomedical signals in noise - removal of artefacts of ded in another -Maternal-Fatal ECG - Muscle-contraction nt detection – case studies with ECG & EEG - Independent sis - Cocktail party problem applied to EEG signals –	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
: Basic ECG - Elec parameters & th	ication of biomedical signals.Cardio vascular applications ctrical Activity of the heart- ECG data acquisition – ECG neir estimation - Use of multiscale analysis for ECG ation - Noise &Artifacts	6	15
interference, Mus Data Compressior measures - Heart	gnal Processing: Baseline Wandering, Power line cle noise filtering –QRS detection - Arrhythmia analysis , n: Lossless &Lossy- Heart Rate Variability – Time Domain Rhythm representation - Spectral analysis of heart rate action with other physiological signals.	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
rhythms & wavefo	logical Applications : The electroencephalogram - EEG orm - categorization of EEG activity - recording applications- Epilepsy, sleep disorders, brain computer	5	20
of EEG - artifacts i spectral analysis -	ing EEG- linear, stochastic models - Non linearmodeling n EEG & their characteristics and processing Model based EEG segmentation - Joint Time-Frequency analysis - is of EEG channels - coherence analysis of EEG channels.	6	20

END SEMESTER EXAM					
COURSE CODE COURSE NAME L-T-P:C YEAR					
04 EC 6722 Detection and estimation 3-0-0:3 2015					

Pre-requisites: Linearalgebra, Random Process

Course Objectives:

- To introduce Detection theory and impart knowledge in both single observation and multiple observations.
- To introduce the need of Estimation theory and different methods for estimation
- To understand the different properties of estimators
- To introduce state estimation

Syllabus

Fundamentals of Detection Theory-Hypothesis Testing- Detection of Signals in White Gaussian Noise -Fundamentals of Estimation Theory-Estimation Techniques-Deterministic Parameter Estimation-Random Parameter Estimation-State Estimation-Kalman Filter

Course Outcome:

The student will be able to

- 1. Differentiate and apply methods of detection for deterministic and random signals to solve problems
- 2. Solve problems involving estimation of different signals

Text Books:

1. M D Srinath, P K Rajasekaran, R Viswanathan, Introduction to Statistical Signal Processing with Applications, "Pearson"

2. Steven M. Kay, "Statistical Signal Processing: Vol. 1: Estimation Theory, Vol. 2:

Detection Theory," Prentice Hall Inc., 1998.

References:

1. Jerry M. Mendel, "Lessons in Estimation Theory for Signal Processing,

Communication and Control," Prentice Hall Inc., 1995

2. Ralph D. Hippenstiel, "Detection Theory- Applications and Digital Signal Processing", CRC Press, 2002.

3. Bernard C. Levy, "Principles of Signal Detection and Parameter Estimation", Springer, New York, 2008.

4. Harry L. Van Trees, "Detection, Estimation and Modulation Theory, Part 1 and 2," John Wiley & Sons Inc. 1968.

5. Neel A. Macmillan and C. Douglas Creelman, "Detection Theory: A User's Guide (Sec. Edn.)" Lawrence Erlbaum Associates Publishers, USA, 2004.

6. Monson H. Hayes, "Statistical Digital Signal Processing and Modelling," John Wiley

& Sons Inc., 1996.

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6722	Detection and estimation	3-	0-0:3
	MODULES		Sem. Exam Marks (%)
Bayes' Detection, of Error Criterio Multiple Hypoth	amentals of Detection Theory : Hypothesis Testing: MAP Detection, ML Detection, Minimum Probability n, Min-Max Criterion, Neyman-Pearson Criterion, lesis,Composite Hypothesis Testing: Generalized st (GLRT),Receiver Operating Characteristic Curves	8	15
Detection of Kno	tion of Signals in White Gaussian Noise (WGN) Binary own Signals in WGN, M-ary Detection of Known Matched Filter Approach, Detection of signals with ers	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Signal Processing, unbiased(MVU) e Lower Bound, Line	mentals of Estimation Theory : Role of Estimation in Unbiased Estimation, Minimum variance stimators, Finding MVU Estimators Cramer-Rao ear Modeling-Examples Sufficient Statistics, Use of as to find the MVU Estimator	7	15
MODULE 4:Estima Estimation: Least Squares Estimatio Maximum Likeliho	7	15	
	INTERNAL TEST 2 (MODULE 3 & 4)		
Selection of a Pric	m Parameter Estimation: Bayesian Philosophy, or PDF Bayesian linear model Minimum Mean Square Naximum a Posteriori Estimation	7	20
MODULE 6: Star Predictors,Filterin	7	20	
	END SEMESTER EXAM		· · · · · · · · · · · · · · · · · · ·

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6724	Design of Embedded Systems	3-0-0:3	2015

Course Objectives:

- To provide an introduction to the design of embedded systems including their hardware and software architectures, design methodologies and tools, and communication protocols..
- To get a clear understanding of the various interfacing concepts and to learn more on RTOS.

Syllabus

Embedded Design Process, Embedded System Development Environment, Memory Systems, Embedded Programing, Embedded Communication Protocols, Embedded Firmware Design And Development

Course Outcome:

After Learning this course, the student will be able to understand:-

- Systems approach to Embedded Systems
- Industrial applications of embedded systems
- Deal with complex issues in embedded systems both systematically and creatively

Text Books:

- 1. Steve Heath, Embedded System Design Elsevier Publications 2005
- 2. Gajski and Vahid, "Specification and Design of Embedded systems", Prentice Hall. 2002

References:

- 1. Embedded Systems Design: An Introduction to Processes, Tools, and Techniques by Arnold S. Berger CMP Books, 2002
- 2. Frank Vahid and Tony Givargis, Embedded System Design-A Unified Hardware/Software Introduction", John Wiley & Sons, 2002.
- 3. K. V. Shibu," Introduction To Embedded Systems", Tata McGraw-Hill Education Pvt. Ltd. 2009
- 4. Raj Kamal, Embedded Systems Tata McGraw-Hill Education, 2008

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6724	Design of Embedded Systems	3-	0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Design challenge partitioning , Har testing Selection purpose Processo	DDED DESIGN PROCESS:Embedded system overview, , Product specification , Hardware / Software dware and software design , Integration , Product n Processes , General-purpose Processors, Single- ors, and Application Specific Processors , Use of development of an Embedded system.	8	15
Fundamental issu models in en environment (IDE	EDDED SYSTEM DEVELOPMENT ENVIRONMENT: es in hardware software co-design, Computational nbedded design.The Integrated development i), Types of files generated on cross compilation, ompilers, Emulators and debugging, Boundary scan	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Technology, Video organization ,Cach coherency . RTOS: Management, Sch	DRY SYSTEMS:Memory Technologies, DRAM DRAM,SRAM ,DRAM,EPROM and OTP ,Memory the memory -Cache size and organization ,Cache Introduction, Basic OS functions, Process eduling and Interrupt-latency control functions, nd Time Management, IPC Synchronization.	6	15
MODULE 4:EMBEDDED PROGRAMING:Integrated development environment Tools, Compiling, Linking and locating, Downloadingand debugging, Emulators and simulators processor, Overview of PIC AVR family of microcontrollers and ARM processors.		9	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Networking: Intro communication p Serial Protocols -S bus, SHARC link	DDED COMMUNICATION PROTOCOLS :Embedded oduction – Serial/Parallel Communication –Serial rotocols -RS232 standard – RS485 – Synchronous Gerial Peripheral Interface (SPI)The I2C Bus, The CAN Ports, Ethernet, Internet, Bluetooth: Specification, placement protocol.	7	20
MODULE 6:EMBI Embedded firmv development lan	EDDED FIRMWARE DESIGN AND DEVELOPMENT: ware design approaches, Embedded firmware guage.Real time operating system (RTOS) based n design: Operating system basics, Types of OS,	6	20

Tasks, Process and threads , Multiprocessing and multitasking, Task			
scheduling, Threads, Processing and scheduling: Putting them			
altogether, Task communication, task synchronization, Device drivers,			
How to choose an RTOS.			
END SEMESTER EXAM			

COURSE (CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6	726	Transform Theory	3-0-0:3	2015

Course Objectives:

To impart a thorough knowledge in transforms

Syllabus

Linear Operators on Finite-dimensional Vector Spaces- eigenvalues, eigenvectors and eigenspace of a linear operator- Orthogonal transformations, Singular value decomposition, Normed Linear Spaces-Bounded Linear Operators and Spectral Theory - Theory of Distributions-The making of Laplace transform and Fourier transform-Lapped Transforms Karhunen-Loeve transform - The Making of Continuous Wavelet Transform

Course Outcome:

Students who successfully complete this course will have basic concept in transform.

Text Books:

 Arch W. Naylor and George R. Sell, "Linear Operator Theory in Engineering and Science," 2nd Edition, Springer-Verlag, New York, 1982.
 Larry Smith, "Linear Algebra," 2nd Edition, Springer-Verlag, New York 1982

References:

1. LokenathDebnath and PiotrMikusinski, "Hilbert Spaces with Applications," 3rd Edition, Academic Press, Indian reprint 2006.

2. A. David Wunsch, "Complex Variables with Applications," 2nd Edition, Addison-Wesley Publishing Company, New York, 1994.

3. Erwin Kreyszig, "Introductory Functional Analysis with Applications," John Wiley and Sons, 1989.

4. George Bachman and Lawrence Narici, "Functional Analysis," Dover Publications Inc., 2000.

5. Frederick W Byron, Jr and Robert W Fuller, "Mathematics of Classical and Quantum Physics," Dover Publications Inc., 1992.

6. Athanasios Papoulis, "Fourier Integral and its Applications," McGraw-Hill International, New York, 1962.

7. Athanasios Papoulis, "Systems and Transforms with Applications in Optics," McGraw-Hill International, New York, 1968.

8. Anthony N. Michel and Charles J. Herget, "Applied Algebra and Functional Analysis," Dover Publications Inc., 1993.

9. Stephen G. Mallat, "A Wavelet Tour of Signal Processing," 2nd Edition, Academic Press, 2000.

10. Gerald Kaiser, "A Friendly Guide to Wavelets," Birkhauser/Springer International Edition, 1994, Indian reprint 2005.

11. Ingrid Daubechies, "Ten Lectures on Wavelets," SIAM, 1990.

COURSE CODE:	COURSE TITLE	CR	EDITS
04 EC 6726	Transform Theory	3-	0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
eigenspace of a li decomposition c Diagonalization, F	avalue problems, eigenvalues, eigenvectors and near operator,Linear operators with an eigenbasis, of vector spaces, Similarity transformations - Primary decomposition theorem, Jordan Canonical on; Fredholm alternative theorem, Least squares pseudoinverses,LU decomposition, Orthogonal Singular value decomposition,Householder	10	15
Completeness of Normed linear sp	ionals - Norm, Convergence - Cauchy sequence, vector spaces;Infinite dimensional vector spaces - aces; Banach Spaces, Inner product spaces, Hilbert is linear operators.	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
linear operators ir an operator, Norr analysis of self-a	led Linear Operators and Spectral Theory Bounded in finite dimensional inner product spaces -Adjoint of m of an operator; Self-adjoint operators - Spectral adjoint operators; Bessel's inequality, Parseval's presentation Theorem, Compact linear operators	7	15
Dirac's delta; Diffe linear operators. transform, Self-re transform - The	y of Distributions, Generalized functions and the erential operators - Green's function and the inverse The making of Laplace transform and Fourier eciprocal functions and operators under Fourier e construction of Fractional Fourier transform; z-transform- Discrete-time Fourier transform and ansform.	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
	d Transforms Karhunen-Loeve transform - Lapped orms and biorthogonal transforms – Construction of d sine transforms.	5	20
Resolution of unit and the general	aking of Continuous Wavelet Transform Reisz basis, cy, Definition of frames, Geometrical considerations notion of a frame, Frame projector, Example - frames;Continuous wavelet transform.	6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6728	OPTICAL SIGNAL PROCESSING	3-0-0:3	2015

Course Objectives:

•

Syllabus

Basics of signal processing and optics-The Fresnel Transforms, the Fourier transform-Spectrum Analysis and Spatial Filtering-Applications for optical signal processing-Acousto-optic cell spatial light modulators-Heterodyne systems- optical Radio.

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to understand the basics of signal processing and optics

Text Books:

- 1. Anthony Vanderlugt, Optical signal processing: Wiley-Interscience
- 2. Dr. Hiroshi Ishikawa , Ultrafast All-Optical Signal Processing Devices: Wiley

References:

1. Francis T. S. Yu, SugandaJutamulia, Optical Signal Processing, Computing, and

Neural Networks: Krieger Publishing Company

- 2. D. Casasent, Optical data processing-Applications, Springer-Verlag, Berlin
- 3. H.J. Caulfield, Handbook of holography, Academic Press New York
- 4. P.M. Dufffieux, The Fourier Transform and its applications to Optics, John Wiley

and sons

5 J. Horner ,Optical Signal Processing Academic Press

6. Joseph W. Goodman, Introduction to Fourier Optics, second edition McGraw Hill.

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6728	OPTICAL SIGNAL PROCESSING	3-0-0	0:3
	MODULES	Contac t Hours	Sem. Exa m Mark s (%)
signal, examples	of signal processing and optics, Characterization of a General ofsignals, Spatial signal. Basic laws of geometrical optics, rrors, the lens formulas, General Imaging conditions, the optical Aberrations.	8	15
Examples of Fouri	cal Optics, The Fresnel Transforms, the Fourier transform, fer transforms, the inverse Fourier transform, Extended Fourier is, Maximum information capacity and optimum packing observe	10	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
detection process	rum Analysis, Light sources, spatial light modulators, The in Fourier domain, System performance parameters, Dynamic amentals of signal processing	7	15
Spatial Filters, F constructing Spa	I Filters, Binary Spatial Filters, Magnitude Spatial Filters, Phase Real valued Spatial Filters, Interferometric techniques for tial Filters. Optical signal processor and filter generator, ptical signal procesing	8	15
INTERNAL TEST 2 (MODULE 3 & 4)			
	to-optic cell spatial light modulators, Applications of acousto- ic Acousto-optic power spectrum analyzer.	5	20
MODULE 6:Heter Radio.	odyne systems: Interference between two waves, the optical	4	20
	END SEMESTER EXAM		1

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6732	Coding Theory	3-0-0:3	2015

Course Objectives:

To give the Student:-

- A sound background in concepts of Information theory and channel coding.
- An introduction to traditional binary and non-binary channel coding algorithms.
- A foundation on the, extensively used, latest capacity approaching codes

Syllabus

Entropy-Lossless source coding-Asymptotic Equipartition Property-Channel Capacity-Continuous Sources and Channels-Finite Field Arithmetic

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

- Students who successfully complete this course will have a sound background in binary and non-binary error-correcting codes, covering different classes of channel codesblock codes and convolutional codes
- Study the construction of various algebraic codes in the finite fields
- Appreciate the use of iterative probabilistic decoding algorithms
- Motivated to take up research works and projects on the design of efficient communication systems using proper channel codes in standard channel models.

Text Books:

- 1. T. Cover and J. Thomas, Elements of Information Theory, John Wiley & Sons 1991.
- 2. Taub& Schilling, Principles of communication systems, TMH.

References:

- 1. Shulin& Daniel J. Costello, Error control coding Fundamentals and Application,
- 2. Prentice Hall Ed.RobertGallager, "Information Theory and Reliable Communication", John Wiley & Sons.
- 3. R. J. McEliece, "The theory of information & coding", Addison Wesley Publishing Co., 1977.
- 4. T. Bergu, Rate Distortion Theory a Mathematical Basis for Data Compression, PH Inc. 1971.
- 5. Special Issue on Rate Distortion Theory, IEEE Signal Processing Magazine, November 1998.
- 6. Bernard Sklar, Digital Communication, 2/e, Pearson Education, 2001.

COURSE CODE:	COURSE TITLE	CRI	DITS
04 EC 6732	Coding Theory	3-()-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
discrete Random Information and	by- Memory less sources- Markov sources- Entropy of a variable- Joint, conditional and relative entropy Mutual conditional mutual information- Chain relation for entropy and mutual Information	6	15
MODULE 2:Loss Instantaneous co Shannon's Source	des- Kraft's inequality - Optimal codes- Huffman code-	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
	ototic Equipartition Property (AEP)- High probability sets Method of typical sequence as a combinatorial approach r probabilities.	6	15
channels- Arimoto	nel Capacity- Capacity computation for some simple p-Blahut algorithm- Fano's inequality-Proof of Shannon's heorem and its converse- Channels with feed back- Joint ding Theorem.	6	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
entropy- Mutual Mutual informatio channels- Shanno	ential Entropy- Joint, relative and conditional differential information, Waveform channels- Gaussian channels- on and Capacity, calculation for Band limited Gaussian n limit- Parallel Gaussian Channels-Capacity of channels ssian noise- Water filling.	9	20
Integer Ring- Poly primitive element Computations usin	uction, Groups- Rings- Fields- Arithmetic of Galois Field- nomial Rings- Polynomials and Euclidean algorithm, s , Construction and basic properties of Finite Fields- ng Galois Field arithmetic- sub fields- Minimal polynomial fector space- Vector Subspace- Linear Independence.	9	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6734	FPGA System Design	3-0-0:3	2015

Course Objectives:

To give the Student:-

- To learn the various programmable devices and their architecture
- To get the concepts of FSM

Syllabus

Programmable logic Devices- FPGAs-Finite State Machines -FSM Architectures-System Level Design-Introduction to advanced FPGAs: Xilinx Virtex and ALTERA Stratix

Course Outcome:

• Apply the basics of programmable devices, FPGA technology and design process. Students who successfully complete this course will get an idea of FSM

Text Books:

1. Field Programmable Gate Array Technology - S. Trimberger, Edr, 1994, Kluwer Academic Publications.

2. Engineering Digital Design - RICHARD F.TINDER, 2nd Edition, Academic press.

3. Fundamentals of logic design-Charles H. Roth, 4th Edition Jaico Publishing House.

References:

1. Digital Design Using Field Programmable Gate Array, P.K. Chan & S. Mourad, 1994, Prentice Hall.

2. Field programmable gate array, S. Brown, R.J. Francis, J. Rose, Z.G. Vranesic, 2007, BS

COURSE CODE:	COURSE TITLE	CRI	EDITS
04 EC 6734	FPGA System Design	3-0	0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Features, Archi	ammable logic Devices: ROM, PLA, PAL, CPLD, FPGA tectures and Programming. Applications and f MSI circuits using Programmable logic Devices.	7	15
routing architectu	mapping for FPGAs, Case studies Xilinx XC4000 &	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		I
Transition Table, machine charts u	e State Machines (FSM): Top Down Design, State State assignments for FPGAs,Realization of state using PAL, Alternative realization for state machine oprogramming, linked state machine, encoded state	8	15
registered PLDs, registers, One_Ho	Architectures: Architectures Centered around non Design of state machines centeredaround shift ot state machine, Petrinets for state machines-Basic perties, Finite State Machine-Case study.	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Functional partition front end digital	design tools for FPGAs. System level design using Xilinx EDA tool (FPGA Advantage/Xilinx ISE), Design	8	20
Stratix Case stud		7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6792	MINI PROJECT	0-0-4:2	2015

Mini project is designed to develop practical ability and knowledge about practical tools/techniques in order to solve the actual problems related to the industry, academic institutions or similar area. Students can take up any application level/system level project pertaining to a relevant domain. Projects can be chosen either from the list provided by the faculty or in the field of interest of the student. For external projects, students should obtain prior permission after submitting the details to the guide and synopsis of the work. The project guide should have a minimum qualification of ME/M.Tech in relevant field of work. At the end of each phase, presentation and demonstration of the project should be conducted, which will be evaluated by a panel of examiners. A detailed project report duly approved by the guide in the prescribed format should be submitted by the student for final evaluation. Publishing the work in Conference Proceedings/ Journals with National/ International status with the consent of the guide will carry an additional weightage in the review process.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6794	ADVANCED SIGNAL PROCESSING LAB-II	0-0-2:1	2015

Objective: To experiment the concepts introduced in the core and elective courses offered in the second semester with the help of MATLAB and DSP kit.

EXPECTED OUTCOME:

The student will be able to analyze and implement the concepts in the core / elective courses offered in the second semester.

SUMMER BREAK

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7790	INDUSTRIAL TRAINING	0-0-4: Pass/Fail	2015

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7701	LINEAR AND NONLINEAR OPTIMIZATION	3-0-0:3	2015

Course Objectives:

To give the Student:-

- An ability to solve Linear programming Problems
- An ability to solve nonlinear programming,
- Apply constrained optimization techniques in real applications

Syllabus

Linear programming, nonlinear programming, constrained optimization

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to solve problem using Linear programming, nonlinear programming, constrained optimization

Text Books:

- 1. David G Luenberger, .Linear and Non Linear Programming., 2nd Ed, Addison-
- 2. Wesley, 1984
- 3. S.S.Rao, .Engineering Optimization.; Theory and Practice; Revised 3rd Edition, New
- 4. Age International Publishers, New Delhi
- 5. Fletcher R., Practical methods of optimization, John Wiley, 1980.

References:

- 1. Hillier and Lieberman, Introduction to Operations Research, McGraw-Hill, 8th
- 2. edition, 2005.
- 3. Saul I Gass, Linear programming, McGraw-Hill, 5th edition, 2005.
- 4. Bazarra M.S., Sherali H.D. & Shetty C.M., Nonlinear Programming Theory and
- 5. Algorithms, John Wiley, New York, 1979.
- 6. Kalyanmoy Deb, Optimization for Engineering: Design-Algorithms and Examples,
- 7. Prentice Hall (India), 1998.
- 8. S. M. Sinha, Mathematical programming: Theory and Methods, Elsevier, 2006

COURSE CODE:	COURSE TITLE	CI	REDITS
04 EC 7701	LINEAR AND NONLINEAR OPTIMIZATION	3	-0-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Mapping and fund of functions- Mini Vectors and vector forms- Definite	ematical Background: Sequences and Subsequences- ctions-Continuous functions- Infimum and Supremum ma and maxima of functions- Differentiable functions. or spaces- Matrices- Linear transformation- Quadratic quadratic forms- Gradient and Hessian- Linear on of a set of linear equations-Basic solution and	7	15
definition- Conve Separation and Polyhedra- Conv	x sets and Convex cones- Introduction and preliminary x sets and properties- Convex Hulls- Extreme point- support of convex sets- Convex Polytopes and ex cones- Convex and concave functions- Basic entiable convex functions- Generalization of convex	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
formulation and a and multi variable algorithms: The s	r Programming: Introduction -Optimization model, applications- Classical optimization techniques: Single e problems-Types of constraints. Linear optimization implex method -Basic solution and extreme point - parametric programming	10	15
dual, and duality	rimal simplex method -Dual linear programs - Primal, theory - The dual simplex method -The primal-dual applications. Post optimization problems: Sensitivity	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
convex functions convergence. L minimization - Elin	hear Programming: Minimization and maximization of - Local & Global optimum- Convergence-Speed of Jnconstrained optimization: One dimensional mination methods: Fibonacci & Golden section search s - Steepest descent method.	6	20
equality and ine	rained optimization: Constrained optimization with equality constraints. Kelley's convex cutting plane ent projection method - Penalty Function methods	7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7703	Pattern Recognition & Analysis	3-0-0:3	2015

Course Objectives:

To give the Student:-

- An introduction to features, feature vectors and classifiers
- An understanding of Non-Linear classifiers
- To get introduced to Clustering- Cluster analysis Proximity measures and Clustering Algorithms.

Syllabus

Introduction - features, feature vectors and classifiers, Non-Linear classifiers- Two layer and three layer perceptrons, Non-Linear classifiers- Support Vector machines, Clustering- Cluster analysis Proximity measures, Clustering Algorithms.

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to understand feature vectors and classifiers, Non-Linear classifiers- Two layer and three layer perceptrons, Non-Linear classifiers- Support Vector machines, Clustering- and Clustering Algorithms

Text Books:

1. SergiosTheodoridis, KonstantinosKoutroumbas, "Pattern Recognition", Academic Press, 2006.

2. Richard O. Duda and Hart P.E, and David G Stork, Pattern classification , 2nd Edn., John Wiley & Sons Inc., 2001

References:

1. Fu K.S., Syntactic Pattern recognition and applications, Prentice Hall, Eaglewood cliffs, N.J., 1982

2. Andrew R. Webb, Statistical Pattern Recognition, John Wiley & Sons, 2002.

3. Christopher M Bishop, Pattern Recognition and Machine Learning, Springer 2007

4 Earl Gose, Richard Johnsonbaugh, and Steve Jost; Pattern Recognition and Image Analysis, PHI Pvte.Ltd., NewDelhi-1, 1999.

COURSE CODE:	COURSE TITLE	CREDITS		
04 EC 7703	Pattern Recognition & Analysis	3-	0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)	
Supervised versu based on Bayes functions and dec	uction - features, feature vectors and classifiers, s unsupervised pattern recognition. Classifiers 5 Decision theory- introduction, discriminant cision surfaces, Bayesian classification for normal nation of unknown probability density functions, bour rule.	7	15	
decision hyper pl	r classifiers,- Linear discriminant functions and anes, The perceptron algorithm, MSE estimation, ation, Support Vector machines	6	15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
perceptrons, Bac	Linear classifiers- Two layer and three layer < propagation algorithm, Networks with Weight al classifiers, Radial Basis function networks.	6	15	
machines-nonline Feature selectio	e Drivers Non-Linear classifiers- Support Vector ar case, Decision trees,combining classifiers, n, Receiver Operating Characteristics (ROC) bility measures, Optimal feature generation, The cion	9	15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
Clustering Algoriting implementation.	ering- Cluster analysis, Proximity measures, hms - Sequential algorithms, Neural Network Hierarchical algorithms - Agglomerative ive algorithms. Schemes based on function zzy clustering algorithms, Probabilistic clustering, m.	8	20	
Competitive lear Algorithms Bounc	ering algorithms based on graph theory , ning algorithms, Binary Morphology Clustering lary detection methods, Valley seeking clustering, methods. Clustering validity.	6	20	
optimization - Fu K - means algorith MODULE 6:Clust Competitive lear Algorithms Bound	zzy clustering algorithms, Probabilistic clustering, m. ering algorithms based on graph theory , ning algorithms, Binary Morphology Clustering lary detection methods, Valley seeking clustering,			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7705	SECURE COMMUNICATION	3-0-0:3	2015

Course Objectives:

To give the Student:-

- An understanding of rings and fields
- An understanding of Basic encryption techniques
- Ability to design Private key and Public key cryptosystems

Syllabus

Rings and fields, Basic encryption techniques, Private key and Public key cryptosystems, Elliptic curves

Course Outcome:

Text Books:

 Douglas A. Stinson, "Cryptography, Theory and Practice", 2nd edition, Chapman & Hall, CRC Press Company, Washington
 William Stallings, "Cryptography and Network Security", 3rd edition, Pearson Education

References:

1. Lawrence C. Washington, " Elliptic Curves", Chapman & Hall, CRC Press Company, Washington.

- 2. David S. Dummit, Richard M. Foote, "Abstract Algebra", John Wiley & Sons
- 3. EvangelosKranakis, "Primality and Cryptography", John Wiley & Sons
- 4. Rainer A. Ruppel, "Analysis and Design of Stream Ciphers", Springer Verlag

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 7705	SECURE COMMUNICATION	3-0	-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
Principal Ideal D	s and fields - Homomorphism- Euclidean domains - Domains - Unique Factorization Domains - Field ting fields - Divisibility- Euler theorem -Chinese em—Primality	8	15
Shannon's theory algorithms - Fea	encryption techniques - Concept of cryptanalysis - v - Perfect secrecy -Block ciphers - Cryptographic tures of DES - Stream ciphers - Pseudorandom cors – linear complexity - Non-linear combination of nctions	9	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
functions - Disci	ate key and Public key cryptosystems - One way rete log problem - Factorization problem - RSA e Hellmann key exchange - Message authentication s	8	15
	l signatures - Secret sharing - features of visual ner applications of cryptography.	5	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
· ·	c curves - Basic theory - Weirstrass equation - Group nfinity -Elliptic curves over finite fields - Discrete n on EC	7	20
	c curve cryptography -Diffie Hellmann key exchange encryption over EC – ECDSA	5	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7707	Digital Control Systems	3-0-0:3	2015

Pre-requisites: Control systems

Course Objectives:

To give the Student:-

• The ability to understand the basic concept of Digital Control Systems

Syllabus

- Sampling process
- Z Transform methods
- Design of digital control systems
- Design of Digital Control Systems: Cascade and feedback compensation
- State variable methods
- Response between sampling instants

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

• Understand the basic concept of Digital Control Systems

Text Books:

- Digital Control systems, Benjamin C Kuo, Saunders College publishing, 1997.
- Digital control and state variable methods, M Gopal, Tata McGraw Hill publishers, 1997.

References:

- Discrete time control systems, Katsuhito Ogata, Prentice Hall
- Digital Control systems, Constantine H Houpis and Gary B Lamont, McGraw Hill

3 Contact Hours 7	-0-0:3 Sem. Exam Marks (%)
Hours	
7	
	15
7	15
6	15
9	15
6	20
7	20
	9

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7709	MARKOV MODELLING AND QUEUING THEORY	3-0-0:3	2015

Course Objectives:

• To give an idea of different models used in queuing theory

Syllabus

Stochastic Processes-Markov Models- Single Class & Multi-class Queuing Networks-Time Delays and Blocking in Queuing Networks

Course Outcome:

At the end of the course the student have the basic concept of queuing models.

Text Books:

1. Ronald W. Wolff, Stochastic Modeling and The Theory of Queues, Prentice-Hall International, Inc, 1989.

2. Peter G. Harrison and Naresh M. Patel, Performance Modeling of Communication Networks and Computer Architectures, Addison-Wesley, 1992.

3. Gary N. Higginbottom, Performance Evaluation of Communication Networks, Artech House, 1998

References:

1. Anurag Kumar, D. Manjunath, and Joy Kuri, Communication Networking: An Analytical Approach, Morgan Kaufman Publ. 2004.

2. D. Bertsekas and R. Gallager, Data Networks, Prentice Hall of India, 2001.

3. Ross, K.W., Multiservice Loss Models for Broadband Telecommunication Networks, Springer-Verlag, 1995.

4. Walrand, J., An Introduction to Queueing Networks, Prentice Hall, 1988.

5. Cinlar, E., Introduction to Stochastic processes, Prentice Hall, 1975.

6. Karlin, S. and Taylor, H., A First course in Stochastic Processes, 2nd edition Academic press, 1975

COURSE CODE:	COURSE TITLE	CREDITS	
04 EC 7709	04 EC 7709 MARKOV MODELLING AND QUEUING THEORY		-0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
	astic Processes: Renewal Processes - Reward and Poisson Process; Point Processes; Regenerative al Theorems.	8	15
MODULE 2:Markov Models: Discrete Time Markov Chain - Transition Probabilities, Communication Classes, Irreducible - Chains; Continuous Time Markov Chain - Pure-Jump Continuous- Time Chains, Regular Chains, Birth and Death Process, Semi-Markov Processes.		10	15
INTERNAL TEST 1 (MODULE 1 & 2)			
-	Class Queuing Networks: Simple Markovian queues; G/1 queue; Open queuing networks; Closed queuing value analysis;	6	15
MODULE 4:Multiclass traffic model; Service time distributions; BCMP networks; Priority systems.		6	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Time Delays in Queuing Networks: Time delays in single server queue; Time delays in networks of queues;		6	20
MODULE 6:Blocking in Queuing Networks: Types of Blocking; Two finite queues in a closed network; Aggregating Markovian states.		6	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7711	SPEECH& AUDIO SIGNAL PROCESSING	3-0-0:3	2015

Course Objectives:

- To understand concept of speech & music production
- To analyse the speech/audio coding and processing techniques

Syllabus

Mechanism of speech production - Acoustic theory of speech production -digital models – ARModel, ARMA model -auto correlation-Spectral analysis of speech -Speech coding -Speech Transformations - Audio Processing-Music Production

Course Outcome:

• The student will be able to analyze various aspects of speech and audio signal processing Techniques

Text Books:

1. Rabiner L.R. & Schafer R.W., Digital Processing of Speech Signals, Prentice Hall Inc.

2. O'Shaughnessy, D. Speech Communication, Human and Machine. Addison-Wesley.

References:

1. Thomas F. Quatieri , Discrete-time Speech Signal Processing: Principles and Practice Prentice Hall, Signal Processing Series.

2. Rabiner L.R. & Gold, Theory and Applications of Digital Signal Processing, Prentice

Hall of India

3. Jayant, N. S. and P. Noll. Digital Coding of Waveforms: Principles and Applications to Speech and Video. Signal Processing Series, Englewood Cliffs: Prentice- Hall

4. Deller, J., J. Proakis, and J. Hansen. Discrete-Time Processing of Speech Signals.

Macmillan.

5. Ben Gold & Nelson Morgan , Speech and Audio Signal Processing, John Wiley &

Sons, Inc.

- 6. Owens F.J., Signal Processing of Speech, Macmillan New Electronics
- 7. Saito S. & Nakata K., Fundamentals of Speech Signal Processing, Academic Press, Inc.
 - 75 APJ Abdul Kalam Technological University | Cluster 4 | M. Tech Program in Signal Processing

COURSE CODE:	COURSE TITLE	CI	REDITS
04 EC 7711	SPEECH& AUDIO SIGNAL PROCESSING	3	-0-0:3
	MODULES		Sem. Exam Marks (%)
MODULE 1:Mechanism of speech production - Acoustic theory of speech production (Excitation, Vocal tract model for speech analysis, Formant structure, Pitch)- digital models – linear prediction of speech - AR Model, ARMA model -auto correlation - formulation of LPC equation - solution of LPC equations - Levinson Durbin algorithm – Levinson recursion - Schur algorithm – lattice formulations and solutions - PARCOR coefficients		7	15
MODULE 2:Spectr filter bank design	al analysis of speech - Short Time Fourier analysis - . Auditory Perception: Psychoacoustics- Frequency al Bands – Masking properties of human ear.	5	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
coding - channel vector quantizer pitch extraction autocorrelation homomorphic sp convolution - c homomorphic spe CASA, ICA & Mode	h coding -subband coding of speech - transform vocoder – formant vocoder – cepstralvocoder - coder- Linear predictive Coder. Speech synthesis - algorithms - gold rabiner pitch trackers - pitch trackers - voice/unvoiced detection - peech processing – homomorphic systems for complex cepstrums – pitch extraction using eech processing. Sound Mixtures and Separation - el based separation.	11	15
Voice Morphing. word recognition word recognition		8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Modeling -Differe	 Processing : Non speech and Music Signals - ential, transform and subband coding of audio ds - High Quality Audio coding using Psychoacoustic udio coding standard. 	6	20
instrument - Frec	Production - sequence of steps in a bowed string quency response measurement of the bridge of a bases and applications - Content based retrieval.	5	20

END SEMESTER EXAM			
COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7713	Error control coding	3-0-0:3	2015

Pre-requisites:

Course Objectives:

- To give the basic ideas of error control coding
- To impart knowledge about different types of codes used in communication

Syllabus

Finite Field Arithmetic-Linear Block Codes-Cyclic Codes-Convolutional Codes-Soft Decision and Iterative Decoding

Course Outcome:

At the end of the course the student have the fundamentals of error control coding.

Text Books:

1. R.E. Blahut, "Theory and Practice of Error Control Coding", MGH 1983.

2. W.C. Huffman and Vera Pless, "Fundamentals of Error correcting codes", Cambridge University Press, 2003.

3. Shu Lin and Daniel. J. Costello Jr., "Error Control Coding: Fundamentals and applications", Prentice Hall Inc, 1983.

References:

1. Rolf Johannesson, Kamil Sh. Zigangirov, "Fundamentals of Convolutional Coding", Universities Press(India) Ltd. 2001.

2. Sklar, 'Digital Communication', Pearson Education.

COURSE CODE:	COURSE TITLE	C	REDITS
04 EC 7713	Error control coding		3-0-0:3
	MODULES		Sem. Exam Marks (%)
MODULE 1:Finite Field Arithmetic: Introduction, Groups- Rings- Fields- Arithmetic of Galois Field- Integer Ring- Polynomial Rings- Polynomials and Euclidean algorithm, primitive elements, Construction and basic properties of Finite Fields- Computations using Galois Field arithmetic- sub fields- Minimal polynomial and conjugates		6	15
MODULE 2:Vector	space - Vector Subspace- Linear independence.	4	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Minimum Distand and Syndrome de	r Block Codes: Linear Block codes- Properties- ce- Error detection and correction- Standard Array ecoding- Hamming codes- Perfect and Quasiperfect codes- Hadamard codes.	8	15
MODULE 4:Cyclic Codes: Basic theory of Cyclic codes- Generator and Parity check matrices – Cyclic encoders- Error detection & correction- decoding of cyclic codes- Cyclic Hamming codes- Binary Golay codes- BCH codes- Decoding of BCH codes-The Berlekamp- Massey decoding algorithm. Reed Solomon codes- Generalized Reed Solomon codes- MDS codes.		10	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
state, tree and Likelihood decodi	olutional Codes: Generator matrices and encoding- trellis diagram - Transfer function - Maximum ng Hard versus Soft decision decoding – The Viterbi istance- Catastrophic encoders.	8	20
		6	20
END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7715	Artificial Neural Network	3-0-0:3	2015

Course Objectives:

To give the Student:-

- The ability to understand the basic concept of Artificial Neural Network
- The ability to understand the basic concept of relation between biological neural network and artificial Neural Network
- The ability to understand the basic concept of Genetic algorithms

Syllabus

Introduction to Artificial Neural Network- Supervised and unsupervised learning- Statistical pattern recognition perspective of ANNs- Recurrent Neural Networks, Attractor neural networks- Fuzzy Systems-Genetic algorithms and Evolutionary programming

Course Outcome:

Students who successfully complete this course will have demonstrated the knowledge and ability to

• Understand the basic concept of Artificial Neural Network

Text Books:

- 1. Neural Networks, A Class room approach, Satish Kumar, Tata McGraw Hill, 2004
- 2. Artificial Intelligence and Intelligent Systems, N.P Padhy, Oxford University Press, 2005.

References:

- 1. Introduction to Artificial Systems, J M Zurada, Jaico Publishers
- 2. Neural Networks A Comprehensive Foundation, Simon Haykins, PHI
- 3. Advanced Methods in Neural Computing, Wasserman P.D, Van Nostrand Reinhold, NewYork.
- 4. Fuzzy Logic with Engineering Applications, Timothy J. Ross: TMH
- 5. Methods of Optimization". G. R Walsh, John Wiley & Sons.
- 6. Fuzzy Logic and Genetic Algorithms, Rajasekharan&Pai Neural Networks, PHI
- 7. Artificial Intelligence, Elaine Rich, Kevin Knight, Tata McGraw Hill, 2006
- 8. Artificial Neural Networks, Yegnanarayana, PHI, 1999
- 9. Introduction to Artificial Intelligence, E.Cherniak, D. McDermott, Addison Wesley Pub. 1987
- 10. Fundamentals of Neural Networks- Architectures, Algorithms and Applications- L. Fausett, Pearson-Education, 2007

COURSE CODE:	COURSE TITLE	CRE	DITS
04 EC 7715	Artificial Neural Network	3-0)-0:3
	MODULES		Sem. Exam Marks (%)
Human brain and Networks and	architectures, geometry of binary threshold neurons and their		15
generalization an	rvised and unsupervised learning, concepts of d fault tolerance Supervised learning: Perceptrons opagation Neural Networks, Fast variants of Back	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Bayes theorem, Ir theorem, interpre networks, error fu classification pr	tical pattern recognition perspective of ANNs: nplementing classification decisions with the Bayes eting neuron signals as probabilities, Multilayered unctions, posterior probabilities, error functions for oblems, Support vector machines, RBFNNs, eory, learning in RBFNNs, Image classification	10	15
MODULE 4:Recurrent Neural Networks: Dynamical systems, states, state vectors, state equations, attractors and stability, linear and non linear dynamical systems, Lyupanov stability, Cohen Grossberg theorem . Attractor neural networks: Associative learning, associative memory, Hopfield memory, Simulated annealing and the Boltzmann Machine, BAM, ART principles, Self Organizing Maps.		9	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
Measures of fuz relations, Neural	 Y Systems: Fuzzy sets, Membership functions, ziness, Fuzzification and defuzzification . Fuzzy Networks and Fuzzy logic, Fuzzy neurons, Fuzzy Y classification networks using Backpropagation , 	6	20
Genetic algorithm machine learning Colony Systems	tic algorithms and Evolutionary programming: ns – operators, working, Genetic algorithm based classifier system. Swarm Intelligent Systems: Ant (ACO): Biological concept, artificial systems - ticle Swarm Intelligent Systems – PCO method ,	6	20

Applications			
COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EC 7791	SEMINAR-II	0-0-2 :2	2015

Each student shall present a seminar on any topic of interest related to the core / elective courses offered in the first semester of the M. Tech. Programme. He / she shall select the topic based on the References: from international journals of repute, preferably IEEE journals. They should get the paper approved by the Programme Co-ordinator / Faculty member in charge of the seminar and shall present it in the class. Every student shall participate in the seminar. The students should undertake a detailed study on the topic and submit a report at the end of the semester. Marks will be awarded based on the topic, presentation, participation in the seminar and the report submitted.

COURSE CODE	COUSE NAME	L-T-P	YEAR
04 EC 7793	PROJECT (PHASE-I)	0-0-12:6	2015

In Project Phase-I, the students are expected to select an emerging research area in the field of specialization. After conducting a detailed literature survey, they should compare and analyze research work done and review recent developments in the area and prepare an initial design of the work to be carried out. It is mandatory that the students should refer National and International Journals and conference proceedings while selecting a topic for their project. He/She should select a recent topic from a reputed International Journal, preferably IEEE/ACM. Emphasis should be given for introduction to the topic, literature survey, and scope of the proposed work along with some preliminary work carried out on the project topic. Students should submit a copy of Phase-I project report covering the content discussed above and highlighting the features of work to be carried out in Phase-II of the project. The candidate should present the current status of the project work and the assessment will be made on the basis of the work and the presentation, by a panel of internal examiners in which one will be the internal guide. The examiners should give their suggestions in writing to the students so that it should be incorporated in the Phase–II of the project. Project phase 1 undergo an evaluation by a panel of examiners.

COURSE CODE	COUSE NAME	L-T-P	YEAR
04 EC 7794	PROJECT (PHASE II)	0-0-21:12	2015

In the fourth semester, the student has to continue the project work and after successfully finishing the work, he / she has to submit a detailed bounded project report. The work carried out should lead to a publication in a National / International Conference or Journal. The papers received acceptance before the M. Tech evaluation will carry specific weightage.

TOTAL MARKS:100	
Project evaluation by the supervisor/s	: 30 Marks
Evaluation by the External expert	: 30 Marks
Presentation & evaluation by the Committee	: 40 Marks